
ARTICLE
Simultaneous Genotype Calling and Haplotype Phasing
Improves Genotype Accuracy and Reduces False-Positive
Associations for Genome-wide Association Studies

Brian L. Browning1,* and Zhaoxia Yu2

We present a novel method for simultaneous genotype calling and haplotype-phase inference. Our method employs the computation-

ally efficient BEAGLE haplotype-frequency model, which can be applied to large-scale studies with millions of markers and thousands

of samples. We compare genotype calls made with our method to genotype calls made with the BIRDSEED, CHIAMO, GenCall, and

ILLUMINUS genotype-calling methods, using genotype data from the Illumina 550K and Affymetrix 500K arrays. We show that our

method has higher genotype-call accuracy and yields fewer uncalled genotypes than competing methods. We perform single-marker

analysis of data from the Wellcome Trust Case Control Consortium bipolar disorder and type 2 diabetes studies. For bipolar disorder,

the genotype calls in the original study yield 25 markers with apparent false-positive association with bipolar disorder at a p < 10�7

significance level, whereas genotype calls made with our method yield no associated markers at this significance threshold. Conversely,

for markers with replicated association with type 2 diabetes, there is good concordance between genotype calls used in the original study

and calls made by our method. Results from single-marker and haplotypic analysis of our method’s genotype calls for the bipolar disorder

study indicate that our method is highly effective at eliminating genotyping artifacts that cause false-positive associations in genome-

wide association studies. Our new genotype-calling methods are implemented in the BEAGLE and BEAGLECALL software packages.
Introduction

Genome-wide association studies (GWAS) are playing an

important role in the discovery of genetic regions and

mechanisms contributing to common diseases.1–4 GWAS

use high-density oligonucleotide arrays to assay hundreds

of thousands of single-nucleotide polymorphisms (SNPs)

and copy-number variants (CNVs) in each individual.

Genotype calls are typically made by using allele signal-

intensity data from the arrays, without making use of

correlation between nearby genetic markers. After exclu-

sions of markers and samples with relatively poor-quality

data, genotype-call accuracy for SNPs in GWAS can be

R 0.999; however, errors are not uniformly distributed

across the genetic markers. For a subset of markers, the

allele signal-intensity data do not form distinct, nonover-

lapping clusters that correspond to the AA, AB, and BB

genotypes, and these markers tend to have higher rates

of missing (uncalled) genotypes and miscalled genotypes.

When genotype-error patterns and missing-genotype

patterns are the same in cases and controls, the missing

and miscalled genotypes cause a loss of power, but do

not necessarily inflate the false-positive rate. However, in

practice, genotype-error and missing-data patterns often

differ between cases and controls because of differences

in sample collection, processing, and storeage.5,6 Case-

control differences in genotype-error and missing-data

patterns can cause false-positive association signals.5–8

For example, in the Wellcome Trust Case Control Consor-

tium (WTCCC) study, the investigators visually inspected

plots of normalized allele signal intensities for approxi-
mately 100 markers per disease to identify false-positive

associations caused by genotyping artifacts.7 Multilocus

analysis has identified hundreds of highly significant asso-

ciations (p < 2.5 3 10�7) in the WTCCC data, most of

which appear to be due to genotyping artifacts.8 Large

numbers of markers with relatively high levels of missing

or miscalled genotypes are not unusual for genome-wide

data sets,7,9,10 particularly when whole-genome-amplified

DNA is used.11

Existing methods for detecting markers with high rates

of miscalled genotypes for GWAS are not completely satis-

factory. We review these existing methods, starting with

the simpler methods that do not incorporate linkage

disequilibrium (LD) information.

Two simple methods for detecting markers with high

rates of miscalled genotypes are visual inspection of clus-

tering on allele signal-intensity plots and data quality

control (QC) filters. Visual inspection of clustering on

allele signal-intensity plots is a valuable approach to de-

tecting genotype error, but it can be applied only to a small

subset of markers, such as the markers showing strongest

association with a trait. Another approach to detecting

markers with high rates of miscalled genotypes is to iden-

tify markers with a high proportion of missing or uncertain

genotypes7 or markers with data showing deviation from

Hardy-Weinberg equilibrium (HWE). Excluding markers

identified by data QC filters can improve genotype accu-

racy, but it also throws away information and can result

in missed association with a trait.8

Other methods for detecting and correcting genotype

errors exploit LD. Intermarker correlation from LD is
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highly informative and can predict randomly masked

genotypes from SNP arrays with > 0.98 accuracy.12 LD-

based methods typically employ a haplotype-frequency

model for the population. The haplotype-frequency model

gives an estimate of the frequency of each possible

sequence of marker alleles on a chromosome. The model

can be constructed from a reference panel, such as the

HapMap,13 or from the called genotypes in the sample.

Genotypes calls that result in unlikely allele sequences

are flagged as possible genotype errors.

Hidden Markov models14 (HMMs) of haplotype frequen-

cies have been used in detecting markers with high levels

of genotype error and correcting miscalled genotypes.

One approach is to incorporate an error model and esti-

mate the error-model parameters for a genotype or for a

marker.15 Another approach is to sequentially mask geno-

type calls and estimate the probability of all possible

genotypes by using the haplotype-frequency model and

remaining genotype data for the individual.16,17 These

HMM genotype-error detection and correction methods

use existing genotype calls, not allele signal intensities,

as input data. Consequently, they cannot make use of

the relative evidence for each possible genotype call given

by the allele signal-intensity data.

Kang et al.18 have described a novel extension of the

Expectation-Maximization (EM) algorithm for inferring

haplotype phase for small sets of tightly linked

markers,19–21 which incorporates genotype uncertainty

when inferring haplotype phase. Although genotype

calling was not the focus of the Kang et al. study, the result-

ing phased haplotypes implicitly determine SNP genotype

calls. The authors use a multinomial model for haplotype

frequencies, and for each marker, they use three t-distribu-

tions to model the distribution of the allele signal-intensity

data (one t-distribution for each possible SNP genotype).

For each marker, the three t-distributions determine three

genotype likelihoods per sample, which give the relative

evidence for each possible genotype call (AA, AB, and

BB). Genotype uncertainty is incorporated into the EM

algorithm for haplotype inference by the use of genotype

likelihoods (instead of called genotypes) as input data for

the EM algorithm.

Kang et al. did not use intermarker correlation to

improve the estimation of the location and dispersion of

the allele signal intensities corresponding to AA, AB, and

BB genotypes. This advance was made by Yu et al.22 in their

novel method for simultaneous estimation of allele signal-

intensity model parameters and haplotype frequencies.

Improved estimation of cluster location and dispersion

parameters for allele signal-intensity data can increase

genotype-call accuracy.

Both Kang et al. and Yu et al. employ a multinomial

model for haplotype frequencies and estimate haplotype

frequencies by using an EM algorithm. Multinomial

models do not explicitly model biological processes, such

as recombination and mutation, that give rise to the

data, and computational constraints limit the number of
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markers that can be used with EM-based algorithms.

Consequently, multinomial models generally cannot

make full use of dense genotype data. Although sophisti-

cated extensions, such as partition-ligation EM, extend

the usefulness of the multinomial model, multinomial

models for haplotype frequencies tend to provide less-

accurate haplotype-phase inference than do methods

based on HMMs.23–25

In summary, existing methods for improving genotype

data accuracy by using LD either do not make full use of

the allele signal data because they reduce the data to geno-

type calls or do not make full use of the LD data because

they use a multinomial model of haplotype frequencies.

In this work, we propose a novel method for simulta-

neous genotype calling and haplotype-phase inference.

Our method makes full use of the LD data by employing

an HMM model for population haplotype frequencies,

and it makes full use of the allele signal-intensity data by

incorporating genotype likelihoods instead of genotype

calls. Posterior genotype probabilities are estimated by

using the allele signal-intensity data and the population-

haplotype-frequency model. The result is improved geno-

type-call accuracy and elimination of many false-positive

associations that are caused by genotyping artifacts. We

demonstrate that our method is computationally efficient

and can be applied to large-scale data sets with hundreds of

thousands of markers and thousands of samples.

Material and Methods

We present a general framework for simultaneous genotype calling

and haplotype-phase inference. Our framework has two compo-

nents: a genotype-calling module and a haplotype-phasing

module. Using separate modules for genotype calling and haplo-

type phasing decouples these tasks, so that either module can be

modified or replaced without changing the other module.

Our method is an iterative method. Each of the iterations

consists of one run of the genotype-calling module followed by

one run of the haplotype-phasing module. For this study, we

have used three iterations. A graphical representation of our

method is given in Figure 1. For each marker, the input data for

the genotype-calling module are the allele signal intensities S

and current estimates of genotype probabilities, (P(AA), P(AB),

P(BB)), for each sample. For each marker, the output data from

the genotype-calling module are the three genotype likelihoods,

P(SjG ¼ g) for g ¼ AA, AB, BB, for each sample. The genotype

likelihood P(SjG ¼ g) is the estimated probability density of the

observed allele signal intensity S if the true genotype is g. The

genotype likelihoods from the genotype-calling module are

the input data for the haplotype-phasing module. The output

data from the haplotype-phasing module are updated estimated

genotype probabilities that are used as input data (along with

the allele signal intensities) for the genotype-calling module in

the next iteration.

Posterior genotype probabilities are produced by both the geno-

type-calling module and the haplotype-phasing module. For

dense genotype data, we have found that posterior genotype prob-

abilities from the haplotype-phasing module yield more accurate

genotype calls than posterior genotype probabilities from the
er 11, 2009



genotype-calling module. This is because the posterior genotype

probabilities from the genotype-calling module are estimated by

using allele signal intensities without making direct use of LD,

but the posterior genotype probabilities from the haplotype-

phasing module are estimated by using allele signal intensities

and LD.

Genotype-Calling Module
Many SNP genotype-calling methods share a similar structure.26

First, the allele signal-intensity data is normalized for reduction

of chip-to-chip nonbiological variability.27 For each marker, the

normalized allele signal intensities for each sample are summa-

rized by a univariate or multivariate statistic, and the parameters

of the probability distribution of the summary statistics for

samples with genotype g (g ¼ AA, AB, or BB) are estimated. The

probability distribution of the genotype (AA, AB, or BB) that maxi-

mizes the likelihood of a sample’s summary statistic determines

the genotype call for the sample.26 In this study, we use the two-

dimensional summary statistic S ¼ (SA, SB) consisting of normal-

ized A and B allele signal intensities, such as is used in the

RLMM genotype-calling algorithm.28 However, our implementa-

tion of the genotype-calling module will accept any summary

statistic that can be modeled with a Gaussian or t distribution.

The genotype-calling module of our method extends this basic

genotype-calling algorithm to accept current estimates of geno-

type probabilities, P(AA), P(AB), and P(BB), for each sample as

input data. When the input genotype probabilities are informed

by LD, the genotype probabilities can be used to improve esti-

mates of the location and dispersion of the allele signal-intensity

data corresponding to each genotype.

It is not uncommon for genotype-calling algorithms to use geno-

type calls from another method or from another data set to

improve genotype-call accuracy28,29 (see also the BRLMM White

Paper in Web Resources). Prior to the initial iteration of our

method, genotype probabilities informed by LD generally are not

available, so for the first iteration of the genotype-calling module,

we use genotype probabilities based on allele signal intensities that

are obtained from another genotype-calling method. After the first

iteration, the genotype-calling module uses updated genotype

probabilities obtained from the haplotype-phasing module.

Some genotype-calling methods (e.g., CHIAMO7 and ILLUMI-

NUS11) produce genotype probabilities that can be used as input

genotype probabilities for the genotype-calling module in the

first iteration of our method. Other genotype-calling methods

Figure 1. A Schematic of the Proposed
Method for Simultaneous Genotype
Calling and Haplotype-Phase Inference

produce a called genotype and a quality

score (e.g., GenCall and BIRDSEED29). If

genotype calls and quality scores (but not

genotype probabilities) are available, we

set a quality-score threshold so that

quality scores that exceed the threshold

represent high-confidence genotype calls.

We create a temporary set of genotype

probabilities by setting the three genotype

probabilities equal to 0.333 for any geno-

type whose quality score is less than the

threshold and by setting the genotype

probability of the called genotype equal to 1.0 and the other two

genotype probabilities equal to 0.0 for any genotype whose

quality score is greater than or equal to the threshold. Then we

perform a separate, preliminary run of the genotype-calling

module using the temporary genotype probabilities as input data

to produce updated genotype probabilities. In this preliminary

run, the uninformative genotype probabilities corresponding to

low confidence genotype calls are not used when modeling the

allele signal-intensity data. The updated genotype probabilities

produced by the preliminary run of the genotype-calling module

are used as the genotype probabilities for the genotype-calling

module in the first iteration of our method.

In this study we use CHIAMO7 and GenCall to obtain initial

genotype probabilities for Affymetrix and Illumina data, respec-

tively. We used a GenCall quality-score threshold of 0.2 when

deriving initial genotype probabilities for Illumina data. Other

genotype-calling methods, such as Birdseed29 and Illuminus,11

can also be used to initialize our method.

The algorithm that we used for estimating posterior genotype

probabilities by using the allele signal-intensity data and genotype

probabilities is described in Appendix 1.

Haplotype-Phasing Module
Our algorithm for the haplotype-phasing module employs the

BEAGLE haplotype-phase-inference algorithm.12,30 BEAGLE uses

an HMM for the haplotype frequencies14 and performs haplo-

type-phase inference by alternating between a model-building

step and a haplotype-sampling step. The original BEAGLE algo-

rithm uses called genotypes as input data. Our algorithm for the

haplotype-phasing module extends the BEAGLE algorithm to

use genotype likelihoods instead of called genotypes as input data.

In the BEAGLE haplotype-phasing algorithm, each state of the

HMM corresponds to a specific marker and is labeled with a single

genotype (AA, AB, or BB). Many HMM states can correspond to a

single marker. In the original BEAGLE haplotype-phasing method,

the observed data for an individual are genotype calls, and the

emission probability of the observed genotype is 1.0 if the

observed genotype agrees with the genotype of the HMM state

and 0.0 otherwise. In the extended BEAGLE algorithm, the

observed data for an individual are the allele signal intensities,

and the emission probability of the individual’s observed signal

intensities S for an HMM state labeled with genotype g is the geno-

type likelihood P(SjG ¼ g) for the marker obtained from the

genotype-calling module.
The American Journal of Human Genetics 85, 847–861, December 11, 2009 849



The computational efficiency of the BEAGLE haplotype-phasing

algorithm depends on the extent to which the observed genotypes

or genotype likelihoods constrain the possible haplotypes. Geno-

type likelihoods with value 0.0 constrain the possible haplotypes,

and thus reduce the computational time. We have found that we

can reduce computational time with negligible decrease in geno-

type accuracy by changing relatively small likelihoods to 0.0.

This is accomplished by a user-defined parameter that sets the

maximum permitted likelihood ratio (default¼ 5000). If the likeli-

hood ratio for genotypes g1 and g2, P(SjG¼ g1)/P(SjG¼ g2), exceeds

the maximum permitted likelihood ratio, then the smaller likeli-

hood P(SjG ¼ g2) is set to 0.0. For the data sets examined in this

paper, the default maximum permitted likelihood ratio of 5000

gave nearly optimal genotype accuracy.

Application to Multiple Cohorts
Many studies involve multiple cohorts from the same population

that have been collected separately. For example, in the WTCCC

data, there is a case cohort and two control cohorts.7 Differences

in sample collection, handling, and storage can induce systematic

intercohort differences in the distribution of allele signal data for

the AA, AB, and BB genotypes,5,6 which can bias genotype calls.

When calling genotypes on multiple cohorts, our implementation

of the genotype-calling module will automatically model the allele

signal-intensity data for each cohort separately to accommodate

intercohort differences in location and dispersion of allele

signal-intensity data. For the haplotype-phasing module, all

cohorts from the same population should be analyzed simulta-

neously.

Data Sets
We used autosomal genotype data from the BD, T2D, UKBS, and

58BC cohorts from the WTCCC study.7 The BD cohort has 1998

individuals diagnosed with bipolar disorder (MIM 125480). The

T2D cohort has 1999 individuals diagnosed with type 2 diabetes

(MIM 125853). The UKBS cohort has 1500 control individuals

selected from a UK sample of blood donors, and the 58BC cohort

has 1504 control individuals from the 1958 British Birth Cohort.31

We chose to use bipolar disorder case-control data because we

wanted to analyze data for a disease that had few SNPs with repli-

cated disease association.7,32 Subsequently, we decided to call

genotypes for the T2D cohort for a separate project, and we used

these T2D genotype calls to evaluate genotype accuracy at SNPs

with replicated association with type 2 diabetes. All four cohorts

were genotyped on the Affymetrix GeneChip Human Mapping

500K Array (the Affymetrix 500K chip) by the WTCCC.7 We

also use autosomal genotype data from the Illumina Infinium

550 SNP BeadChip (the Illumina 550K chip) that was generated

by the Wellcome Trust Sanger Institute for 1438 individuals

from the 1958 British Birth Cohort. There are 1400 individuals

from the 1958 British Birth Cohort that are genotyped on both

the Affymetrix 500K and Illumina 550K chips. The Affymetrix

500K chip has 490,032 autosomal markers, the Illumina 550K

chip has 541,327 autosomal markers, and a subset of 82,981 auto-

somal markers is present on both the Affymetrix 500K and Illu-

mina 550K chips.

Affymetrix 500K chip genotypes were called with the use of our

method and two additional genotype-calling methods: CHIAMO7

and BIRDSEED29 version 2 (incorporated in the Affymetrix Power

Tools 1.10.2 release) with default options used. All CHIAMO calls

were made by the WTCCC, with the use of the version of CHIAMO
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described in the WTCCC study.7 We used BIRDSEED to call geno-

types for the 58BC cohort only. We used our methods to call geno-

types for the bipolar disorder study (BD, 58BC, and UKBS cohorts),

and we used the 58BC calls from the bipolar disorder study to

evaluate genotype discordance rates. We also used our method

to call genotypes for the type 2 diabetes study (T2D, 58BC, and

UKBS cohorts) for a separate project, and we used these data to

perform association tests at the 12 markers on the Affymetrix

500K chip with replicated association with type 2 diabetes that

were described in Table 3 of the WTCCC’s original study7 and

Table 1 of the WTCCC’s type 2 diabetes replication study.33

Genotypes for the Illumina 550K chip for the 1958 British Birth

Cohort were called with the use of our method and two additional

genotype-calling methods: GenCall and ILLUMINUS.11 The

GenCall genotype calls were made by the Wellcome Trust Sanger

Institute. We used ILLUMINUS with default options.

Data QC
For Affymetrix 500K data from the WTCCC study, we excluded

the samples that were excluded in the WTCCC analysis: 130 BD

samples, 75 T2D samples, 24 58BC samples, and 42 UKBS

samples.7 We excluded from the Illumina 550K data for the

1958 British Birth Cohort 15 samples that had> 4% missing auto-

somal genotypes when called with the GenCall algorithm.

Samples were excluded prior to genotype calling when our calling

method was used, and after genotype calling (but prior to down-

stream analysis) when other calling methods were used.

We excluded markers that showed departure from HWE or that

had high proportions of missing genotypes. Details of marker-

exclusion criteria are given in Appendix 2. For Affymetrix data,

the number of autosomal markers excluded was 34,328 for

BIRDSEED, 30,586 for CHIAMO, 25,541 when three iterations of

our method were used with bipolar disorder and control data,

and 29,279 when three iterations of our method were used with

type 2 diabetes and control data. For Illumina data, the number

of autosomal markers excluded was 10,890 for GenCall, 9971 for

Illuminus, and 6711 when three iterations of our method were

used. Genotype accuracy for the nonexcluded markers tends to

increase as the number of marker exclusions increases, so we cali-

brated the missing genotype filters so that our method had the

disadvantage of having fewer excluded markers.

Results

For our method, genotype calls are made with the use of

posterior genotype probabilities generated by the haplo-

type-phasing module. Because the haplotype-phasing

module is implemented in the BEAGLE software package,

for brevity we will occasionally refer to genotype calls

made by our method as being made by BEAGLE.

Genotype Accuracy

Genotype-calling methods that use allele signal intensities,

but not LD, are challenged when the allele signal intensi-

ties do not form distinct clusters, corresponding to the

possible genotypes. Figure 2 displays allele signal intensi-

ties from the Affymetrix 500K array for marker rs4242382

for 1373 individuals from the 58BC cohort whose data

passed QC filters (described in Material and Methods)
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Figure 2. Allele Signal Intensities and
Genotype Calls for Marker rs4242382
Affymetrix 500K chip allele signal intensi-
ties, CHIAMO genotype calls (left panel),
and BEAGLE genotype calls (right panel)
for marker rs4242382 for 1373 individuals
from the 58BC cohort that were genotyped
on the Affymetrix 500K chip and the
Illumina 550K chip and passed genome-
wide QC filters (see Material and Methods).
Genotypes with CHIAMO posterior
probability < 0.90 and BEAGLE posterior
probability < 0.97 are labeled as missing.
Genotype calls for these samples made
with the use of Illumina 550K chip data
have 96.2% concordance with CHIAMO
genotype calls and 99.9% concordance
with BEAGLE genotype calls.
and for which Illumina 550K array genotype data are also

available. In the left panel of Figure 2, the genotype calls

are from CHIAMO and use only allele signal intensities.

In the right panel of Figure 2, the genotype calls are made

with the use of our method and are based on both allele

signal intensities and LD. In the left panel (CHIAMO), there

are 73 uncalled genotypes, and there is a 3.8% discordance

rate (50/1300) with genotype calls made from the Illumina

550K chip. In the right panel, there are two uncalled geno-

types, and there is a 0.15% discordance rate (2/1371) with

genotype calls made from the Illumina 550K chip. The

Illumina 550K chip genotype calls from GenCall, Illumi-

nus, and our method were identical for this marker.

Figure 2 illustrates two limitations of genotype calls

based exclusively on allele signal intensities for a single

marker. The first limitation is well-known: it is impossible

to confidently assign genotypes to data points that lie in

overlapping genotype clusters. In the left panel of Figure 2,

there are 5.3% (73/1373) uncalled genotypes, and almost

all of the uncalled genotypes are in the region where the

major allele homozygote and heterozygote clusters over-

lap. The second limitation is that the allele signal-intensity

data for a single marker may not provide enough informa-

tion for an accurate estimation of the location or disper-

sion of the allele signal intensities for a given genotype.

Note that CHIAMO (left panel) appears to have correctly

identified the clusters in the allele signal data, but in fact,

genotype calls made with the use of LD (right panel) and

those made from Illumina data indicate that the dispersion

of the major allele homozygote cluster is underestimated

in the left panel. Recognition of this increased dispersion

and the use of LD in the haplotype-phasing module pre-

vented our method from miscalling dozens of major allele

homozygote genotypes whose allele signal intensities are

deep within the heterozygote genotype cluster.

We examined genotype-call accuracy for different geno-

type-calling methods for Affymetrix 500K and Illumina
The American
550K data by using all autosomal markers that were geno-

typed on both chips. Genotype accuracy depends on the

quality-score threshold required for calling a genotype. A

stringent threshold leads to higher genotype accuracy

and more uncalled genotypes, whereas a relaxed threshold

leads to lower genotype accuracy and fewer uncalled geno-

types. We show the trade-off between missing-data rates

and genotype accuracy by plotting the missing-data

proportion versus the genotype discordance rates for

different values of the quality-score threshold used in

calling genotypes.

When comparing the accuracy of genotype-calling

methods for Affymetrix data, we computed discordance

with> 105 million Illumina 550K chip reference genotypes

that had estimated genotype probability R 0.999995 when

called with our method. Similarly, when comparing the

accuracy of genotype-calling methods for Illumina data,

we computed discordance with > 99 million Affymetrix

500K chip reference genotypes that had estimated geno-

type probability R 0.999995 when called with our method.

All discordance rates were calculated after the application of

data QC filters that exclude markers and samples with

poorer-quality data (see Material and Methods and

Appendix 2).

Discordance rates between genotype calls from Affyme-

trix data and from Illumina data for the 1958 UK Birth

Cohort are presented in Figure 3. For the evaluation of

Affymetrix data, the comparison included three geno-

type-calling methods (BIRDSEED,29 CHIAMO,7 and our

method), and one hybrid method that used a combination

of genotype calls from allele signal data and genotype

imputation. Genotype imputation has the potential to

provide more accurate genotype calls when the genotype

call based on the allele signal data does not have high

confidence (e.g., < 0.99 genotype probability). For the

hybrid approach, we set all CHIAMO calls that had proba-

bility < 0.99 to missing, we used CHIAMO genotype calls
Journal of Human Genetics 85, 847–861, December 11, 2009 851



Affymetrix 500K Genotypes

Proportion of Uncalled Genotypes

D
is

c
o

rd
a

n
c
e

 R
a

te

0.0 0.01 0.02 0.03 0.04 0.05

0.0

0.0005

0.001

0.0015

0.002
Calling Algorithm

BIRDSEED
CHIAMO
hybrid
BEAGLE

Probability Threshold

0.9
0.99
0.999

Illumina 550K Genotypes

Proportion of Uncalled Genotypes
D

is
c
o

rd
a

n
c
e

 R
a

te
0.0 0.002 0.004 0.006 0.008

0.0

0.0001

0.0002

0.0003

0.0004

0.0005
Calling Algorithm

GenCall
ILLUMINUS
BEAGLE

Probability Threshold

0.9
0.99
0.999

Figure 3. Genotype Discordance and
Missing-Data Rates
Discordance rates for genotype calls for
autosomal Affymetrix 500K chip data
(left panel) and autosomal Illumina 550K
chip data (right panel) are computed with
the use of high-confidence genotype calls
(probability > 0.999995) from the alter-
nate platform. The genotype discordance
rate and missing-data rate depend on the
quality-score threshold required for calling
a genotype. For each method and each
possible calling threshold, the proportion
of missing genotypes and the discordance
rate for called genotypes was computed.
The discordance and missing-data rates
corresponding to calling thresholds of 0.9,
0.99, and 0.999 posterior genotype pro-
bability are shown for the genotype-
calling methods that report genotype
probabilities.
for the nonmissing genotypes, and we imputed the

sporadic missing genotypes by using BEAGLE 3.0.12 Both

the hybrid approach and our proposed method use the

same haplotype-frequency model, but the hybrid ap-

proach does not make use of allele signal intensities at

the imputed markers. We include the hybrid approach to

illustrate the fact that imputation methods that use LD

without using allele signal intensities at the imputed

marker cannot be as accurate as genotype-calling methods

that use both allele signal intensities and LD.

For Affymetrix data, the discordance rate for our method

is at least a factor of seven smaller than the discordance

rates for BIRDSEED and is approximately a factor of four

smaller than the discordance rate for CHIAMO across the

range of missing-genotype proportions for our method.

The hybrid strategy was effective at reducing missing-

data rates relative to CHIAMO; however, it did not yield

as accurate genotypes as CHIAMO did when a stringent

calling threshold (>0.99 genotype probability) is used

for CHIAMO calls. The discordance rate for the hybrid

strategy is much higher than the discordance rate for

our method because the hybrid strategy does not use the

allele signal-intensity data when imputing missing

genotypes.

For the evaluation of Illumina 550K chip genotype data,

three programs were used: GenCall, Illuminus,11 and our

method. The discordance rate for our method was smaller

than the discordance rates for ILLUMINUS and GenCall by

a factor of four or more across the range of missing-geno-

type proportions obtained with our method. A sharp

corner occurs in the GenCall discordance plot at the point

where there is 0.0027 missing data and 0.00013 discor-

dance, and this point corresponds to use of a GenCall score

calling threshold of 0.1. Comparing the left and right

panels of Figure 3 shows that the genotype accuracy for Il-

lumina data is greater than that for Affymetrix data. Conse-

quently, the increased accuracy for Illumina data provided

by our method may be greater than shown in the right

panel of Figure 3, because it is possible that the discordance
852 The American Journal of Human Genetics 85, 847–861, Decemb
in the right panel of Figure 3 is driven by genotype errors in

the Affymetrix data.

We have used our method’s genotype calls on the alter-

native platform as the reference genotypes when

computing discordance rates in Figure 3. Figure S1, avail-

able online, shows that the smaller genotype discordance

for our method’s genotype calls is also evident when Gen-

Call and CHIAMO genotype calls are used as reference

genotypes. For Illumina data, the curves in Figure S1 are

shifted up relative to those of Figure 3 because the

CHIAMO reference genotypes in Figure S1 have a higher

error rate than the corresponding BEAGLE reference geno-

types shown in Figure 3.

The discordance rates in Figure 3 are averaged over all

genotype calls. For the majority of SNPs on current high-

density arrays, there is little scope for improved accuracy

because the SNPs are called with high accuracy by existing

genotype-calling methods. For example, there is perfect

concordance (0% discordance) between the CHIAMO

Affymetrix genotype calls and the GenCall Illumina geno-

type calls for 49% of the autosomal markers that passed the

data QC filters and are present on both chips. Conse-

quently, the average discordance rates in Figure 3 under-

state the improvement in genotype-call accuracy due to

our method for ‘‘difficult’’ SNPs whose allele signal-inten-

sity data does not form three nonoverlapping clusters.

‘‘Difficult’’ SNPs typically have higher missing genotype

rates.7 Figure 4 shows the discordance rates for CHIAMO

and BEAGLE Affymetrix genotype calls for the SNPs that

passed the CHIAMO and BEAGLE data QC filters and have

> 3% missing genotypes when called with CHIAMO.

Cross-platform discordance is calculated with the use of

BEAGLE calls for Illumina data. After excluding markers

identified by the data QC filters used for each method, there

are 4873 SNPs on the Affymetrix 500K chip that had > 3%

missing genotype calls. For the SNPs with > 3% missing

CHIAMO genotype calls, the discordance rate for BEAGLE

genotype calls ranges from 15 to 88 times smaller than

the discordance rate for CHIAMO genotype calls.
er 11, 2009



Given that the cross-platform discordance rate is ex-

pected to be approximately equal to the sum of the geno-

type-error rates, the discordance rates in Figure 3 suggest

upper bounds on the absolute genotype-error rates for

the set of markers that are present on both the Affymetrix

500K and Illumina 550K chips. However, the discordance

rates in Figure 3 may not reflect the genotype-error rate

for markers that are found on one but not both of the

Affymetrix and Illumina chips. There is evidence that the

markers present on both chips tend to have more accurate

genotypes than do markers that are unique to either chip.

For the markers on the Affymetrix 500K chip, 5.3% of the

markers that are not on the Illumina 550K chip and 4.7%

of the markers that are on the Illumina 550K chip were

excluded by the data QC filters for our method. For Illu-

mina 550K chip markers, 1.34% of the markers that are

not on the Affymetrix 500K chip and 0.70% of the markers

that are on the Affymetrix 500K chip were excluded by the

data QC filters for our method. Thus, the actual genotype-

error rates for Affymetrix and Illumina data may be some-

what higher than the discordance rates presented here.

Most of the increased genotype accuracy obtained from

our method is achieved by the first iteration. Improved

modeling of allele signal data and use of increasingly strin-

gent missing-data filters provide additional improvements

in genotype accuracy in later iterations. For Affymetrix

data, when the genotype-calling threshold is set to 0.333
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Figure 4. Genotype Discordance and Missing-Data Rates at
SNPs with > 3% Missing CHIAMO Genotypes
Discordance and missing-data rates are given for CHIAMO and
BEAGLE Affymetrix 500K chip genotype calls for the subset of
SNPs with > 3% missing CHIAMO genotypes. Discordance rates
are computed with the use of high-confidence (genotype proba-
bility > 0.999995) BEAGLE Illumina 550K chip genotype calls.
The unfilled triangle, filled square, and filled triangle identify the
discordance and missing-data rates corresponding to calling
thresholds of 0.9, 0.95, and 0.99 posterior genotype probability.
The America
so that there are no missing genotypes, the genotype

discordance rate was 0.070%, 0.049%, and 0.043% when

1, 2, and 3 iterations of our method were used, respectively.

For the Affymetrix 500K chip, the cumulative number of

autosomal markers excluded by data QC filters prior to

each iteration was 8663, 18,371, and 24,054 markers for

iterations 1, 2, and 3, respectively. The data QC filters

applied at each iteration are described in Appendix 2.

False Positives Due to Genotyping Artifacts

We evaluated the ability of our new methods to reduce

false-positive associations due to differential genotype

bias5,6 by using WTCCC autosomal data from the BD,

58BC, and UKBS cohorts. We performed association anal-

ysis by using genotype calls from CHIAMO and those

from our method and compared the results.

We performed single-marker association analysis by

using PRESTO34 and haplotypic analysis by using

BEAGLE.35 For each single marker (PRESTO) or haplotype

cluster (BEAGLE), an allelic trend test and three genotype

tests were performed, corresponding to recessive, overdom-

inant, and dominant models. The minimum p value (mini-

mized over the four tests) was recorded for each marker.

For the CHIAMO data, we used the WTCCC’s calling

threshold and set genotype calls with posterior probability

< 0.9 as missing. In the supplemental data for the WTCCC

study,7 the WTCCC reported that use of a calling threshold

greater than 0.9 increased the false-positive rate on single-

marker tests because of increased differential missingness.

For the genotype calls from our method, markers with

probability < 0.97 were set to missing, and we excluded

markers that had R 0.03 missing genotypes.

For the BEAGLE haplotypic analysis with CHIAMO

genotype calls, we first phased WTCCC data and imputed

missing data by using BEAGLE as described previously.8 For

the haplotypic analysis with our method’s genotype calls,

we used the most likely phased haplotypes that are output

by the haplotype-phasing module of our method.

Figure 5 presents quantile-quantile plots for the single-

marker analysis and haplotypic analysis of the autosomal

data for the WTCCC bipolar disorder and control cohorts.

Four association-test statistics are plotted for each marker

and for each haplotype cluster tested, corresponding to

the allelic test and three genotypic tests (for recessive, over-

dominant, and dominant models). There is a pronounced

inflation in the association-test statistics from CHIAMO

calls as compared to BEAGLE calls for both the single-

marker and haplotypic tests. For CHIAMO calls, there

were 15 single-marker tests of association and 88 haplo-

typic tests of association for which the chi-square statistic

was > 60. For BEAGLE calls, there were no tests of associa-

tion with chi-square statistic > 60. The inflation factor for

the single-marker analysis was 1.125 for CHIAMO calls and

1.102 for BEAGLE calls. The inflation factor is the ratio of

the median observed allelic trend test statistic for markers

with minor allele frequency R 0.01 and the median of

the chi-square distribution.
n Journal of Human Genetics 85, 847–861, December 11, 2009 853



There is also a striking reduction in extreme association-

test statistics for the WTCCC type 2 diabetes and control

cohorts when BEAGLE calls are used. Figure S2 contains

quantile-quantile plots for the single-marker analysis of

the autosomal data for the WTCCC type 2 diabetes and

control cohorts when markers in three regions showing

replicated association to type 2 diabetes are included (left

panel) and excluded (right panel).

In Figure 6, we plot the minimum p value from the

single-marker analysis of the bipolar disorder and control

data for all markers that had an allelic or genotypic test

p value < 0.0001 when genotype calls from CHIAMO or

from our method were used. (The corresponding p value

scatter plot for type 2 diabetes is presented in Figure S3.)

The missing-data filters used with our method excluded

a large number of markers that had small p values when

called with CHIAMO. For CHIAMO calls, there are 64

markers with p value < 0.0001 that were excluded by the

data QC filters for our method. In contrast, for our

method’s calls there are only five markers with p value

< 0.0001 that were excluded by the WTCCC data QC filters.

When we compared single-marker and haplotypic anal-

ysis of our method’s genotype calls and CHIAMO’s geno-

type calls for bipolar disorder, we found that our method

produced far fewer associated markers and haplotype clus-

ters. In the single-marker analysis, our method yielded

43% fewer associations at a 10�4 significance threshold

(199 versus 350), 63% fewer associations at a 10�5 signifi-

cance threshold (33 versus 89), 84% fewer associations

at a 10�6 significance threshold (7 versus 45), and 100%

fewer associations at a 10�7 significance threshold (0

versus 26). It should be noted that because of the WTCCC’s

postanalysis QC, the published WTCCC bipolar disorder

analysis and the analysis of our genotype calls are in

general agreement. The WTCCC visually inspected allele

signal-intensity plots of associated markers to identify

apparent false-positive associations caused by genotyping

artifacts.7 Our method’s improved genotype-call accuracy
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Figure 5. Quantile-Quantile Plots for
Single-Marker and Haplotypic Analyses
of Bipolar Disorder
Expected and observed association chi-
square test statistics from analysis of
CHIAMO genotype calls and BEAGLE
genotype calls of WTCCC bipolar disorder
and control data. An allelic test statistic
and three genotypic test statistics, corre-
sponding to dominant, overdominant,
and recessive models, are computed for
each marker (left panel) and each tested
haplotype cluster (right panel).
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Figure 6. p Values from Single-Marker Analysis of WTCCC
Bipolar Disorder and Control Data
The minimum p value from an allelic trend test and three geno-
typic tests (for dominant, overdominant, and recessive models)
is calculated for each marker for CHIAMO and BEAGLE genotype
calls. The p values from CHIAMO calls and BEAGLE calls are
plotted with the use of a log scale for all markers with minimum
p value < 0.0001 for one or both genotype-calling methods.
p values for markers that were excluded by data QC filters for
CHIAMO calls but not by those for BEAGLE calls are plotted along
the line y ¼ 1. p values for markers that were excluded by data QC
filters for BEAGLE calls but not by those for CHIAMO calls are
plotted along the line x ¼ 1.

avoided many of the apparent false-

positive associations that were filtered

out in the WTCCC’s postanalysis QC.

For the CHIAMO genotype calls, 25 of

the 26 markers with p < 10�7 were

evidently determined to be false-posi-

tive associations by the WTCCC and were not reported in

the WTCCC study.7 The one marker with p < 10�7 that

was reported by the WTCCC to be associated with bipolar

disorder (rs420259)7 also has a small p value when our

method’s genotype calls are analyzed. Marker rs420259

has a minimum p value of 1.2 3 10�8 under a recessive

model when CHIAMO calls are used and has a minimum
854 The American Journal of Human Genetics 85, 847–861, December 11, 2009



Table 1. Variants with Confirmed Association with Type 2 Diabetes

Marker

Missing Genotypes (%)

Discordance (%)

Allelic Test p Value

CHIAMO BEAGLE CHIAMO BEAGLE

rs7901695 0.19 0.12 0.02 6.7 3 10�13 1.8 3 10�12

rs4506565 0.12 0.00 0.0 5.7 3 10�13 9.2 3 10�13

rs5215 0.16 0.12 0.06 1.3 3 10�3 1.4 3 10�3

rs8050136 0.27 0.00 0.06 2.0 3 10�8 3.5 3 10�8

rs9939609 0.00 0.00 0.0 5.3 3 10�8 5.3 3 10�8

rs1801282 0.12 0.00 0.0 1.3 3 10�3 8.8 3 10�4

rs4402960 0.16 0.00 0.02 1.7 3 10�3 1.8 3 10�3

rs10946398 0.06 0.00 0.0 2.5 3 10�5 3.2 3 10�5

rs9465871 0.10 0.04 0.02 1.0 3 10�6 2.1 3 10�6

rs564398 0.19 0.00 0.06 3.2 3 10�4 2.2 3 10�4

rs10811661 0.04 0.08 0.02 7.5 3 10�4 6.0 3 10�4

rs5015480 2.53 0.68 1.06 5.4 3 10�6 2.1 3 10�5

Comparison of CHIAMO and BEAGLE genotype calls for 12 variants with confirmed association with type 2 diabetes, genotyped on 4862 samples that passed
WTCCC data QC filters in the WTCCC T2D, 58BC, and UKBS cohorts.7,33 CHIAMO genotypes with < 0.90 probability and BEAGLE genotypes with < 0.97 prob-
ability were not called (set as missing genotypes). Discordance rates are calculated with the use of genotypes called by both CHIAMO and BEAGLE. See the Results
section for discussion of marker rs5015480.
p value of 1.8 3 10�7 under a recessive model when our

method’s calls are used. At present, we are not aware of

any studies that have replicated the association of marker

rs420259 with bipolar disorder.32

For the haplotypic analysis, our method yielded 79%

fewer associations at a 10�5 significance threshold (63

versus 301), 92% fewer associations at a 10�6 significance

threshold (12 versus 158), 94% fewer associations at a

10�7 significance threshold (6 versus 116), and 98%

fewer associations at a 10�8 significance threshold (2

versus 82).

Only one of the three regions showing strongest associ-

ation with bipolar disorder in a recent meta-analysis32

(a region on chromosome 1 containing a marker with

meta-analysis p value ¼ 2.0 3 10�7) showed evidence of

association (p < 10�4) in the analysis using the CHIAMO

or BEAGLE calls. For calls with our method, two of the

33 markers that were associated at the p < 10�5 level, 6

of the 63 haplotype clusters that were associated at the

p < 10�5 significance threshold, and 3 of the 12 haplotype

clusters that were associated at the p < 10�6 significance

threshold are within this chromosome 1 region. The small-

est p value observed in the analysis of our method’s calls

in this region was p ¼ 2.6 3 10�7 at a haplotype cluster

localizing to marker rs2987775.

The single-marker and haplotypic analysis of the

WTCCC bipolar disorder data indicate that that our

method is extremely effective at reducing false-positive

association signals from differential genotype bias for

both single-marker and haplotypic association tests. Our

method’s calls result in a large reduction in false-positive

association signals relative to CHIAMO calls, even though
The American
our method excluded fewer markers (25,541 for our

method versus 30,587 for CHIAMO).

Genotypes at Markers Associated with Type 2 Diabetes

We performed case-control association analysis for the 12

SNPs that were genotyped in the T2D, 58BC, and UKBS

cohorts in the WTCCC study and are reported to have

replicated association with type 2 diabetes susceptibility

in the WTCCC’s initial study or in the WTCCC’s type 2 dia-

betes replication study.7,33 We computed missing-data

rates, discordance rates between genotype calls made

with CHIAMO and BEAGLE, and p values by using geno-

type calls made by CHIAMO and BEAGLE (see Table 1).

For 11 of the 12 markers, there is good concordance and

low missing-genotype rates: < 3 discordant genotypes at

each marker, < 13 missing genotypes for CHIAMO, and

< 6 missing genotypes for our method. However, for

marker rs5015480 (last row of Table 1), there are 126

(2.53%) missing genotypes for CHIAMO, 33 (0.68%)

missing genotypes for our method, and 50 (1.06%) discor-

dant genotypes among the 4712 genotypes that were

called by both methods. Allele signal intensities and geno-

type calls for marker rs5015480 are shown in Figure S4.

Marker rs5015480 was also genotyped on the Illumina

550K chip for a subset of 1373 samples from the 58BC

cohort. The CHIAMO genotypes calls have a 1.8% discor-

dance rate (23/1295) with the Illumina genotypes, and

the BEAGLE genotype calls have a 0.074% discordance

rate (1/1359) with the Illumina genotypes. This suggests

that the genotypes and the less-significant p value from

BEAGLE’s genotype calls are likely to be more accurate

for marker rs5015480.
Journal of Human Genetics 85, 847–861, December 11, 2009 855



Discussion

In this study, we have presented a general framework for

simultaneous genotype calling and haplotype-phase infer-

ence. Genotype uncertainty in the allele signal-intensity

data is incorporated in haplotype-phase inference, and

population haplotype frequencies are used to improve

statistical modeling of allele signal-intensity data. Posterior

genotype probabilities are estimated with the use of both

allele signal-intensity data and population haplotype

frequencies.

We compared cross-platform discordance rates for some

of the best existing genotype-calling methods and found

that our method provides a marked improvement in

genotype-call accuracy and missing-genotype rates. We

postulate that the best methods that call genotypes for

one marker at a time are extracting nearly all of the avail-

able information from the allele signal-intensity data for

the marker and that the improved genotype-call accuracy

from our method is due to the use of a population haplo-

type-frequency model.

Our methods can be used to call genotypes for a single

cohort or for multiple cohorts that have intercohort differ-

ences in allele signal intensities. We have shown that anal-

ysis using our method’s genotype calls eliminates a high

proportion of the false-positive associations that are found

in our analysis using the genotype calls from the WTCCC

bipolar disease study.7 The WTCCC demonstrated that one

effective method for eliminating false-positive associations

due to genotyping artifacts is to visually inspect the allele

signal intensities of all apparently associated markers.

Indeed, almost all of the strongest associations reported

by the WTCCC (that passed visual inspection of signal

data) have been replicated in subsequent studies.1,7,33,36,37

However, preventing false-positive associations with

improved genotype calling is preferable to identifying

false-positive associations after they have occurred.

Our framework employs a genotype-calling module and

a haplotype-phasing module. We have provided methods

and software implementation for each module. Many exist-

ing methods for genotype calling and haplotype phasing

can also be adapted and used within the framework.

The algorithm of our genotype-calling module is rela-

tively simple, and we expect that genotype-call accuracy

can be improved by incorporating ideas from existing

genotype-calling methods. For example, it may be benefi-

cial to use different probability distributions to model

homozygous and heterozygous genotypes, as is done in

Illuminus.11 Different normalization methods and

summary statistics for allele signal-intensity data may

also yield improved genotype calls.38 In this study, we

have used the same default parameters for both Affymetrix

and Illumina data. Because Affymetrix and Illumina data

have very different characteristics, it is possible that geno-

type-call accuracy can be further improved by tuning the

parameters (e.g., degrees of freedom) separately for Affyme-

trix data and Illumina data.
856 The American Journal of Human Genetics 85, 847–861, Decemb
Our implementation of the haplotype-phasing module

has several advantages over possible alternative implemen-

tations. First, we use the computationally efficient,

BEAGLE HMM for haplotype frequencies.12 The BEAGLE

model can accommodate large sample sizes, which yield

more accurate haplotype-frequency models.30 Second,

our method uses the samples to build a population haplo-

type-frequency model and does not require a phased refer-

ence panel. Consequently, our method can be used when

a reference panel is not available, has limited sample size,

or is not genetically well matched to the samples. If phased

or unphased genotype data for a reference panel are avail-

able for the population, our method can make use of this

additional data. For very small sample sizes, we expect

that genotype accuracy can be improved by including

data from a reference panel when running the haplo-

type-phasing module, because the accuracy of the BEAGLE

haplotype-frequency model tends to increase with sample

size.30

We have demonstrated that our method can be applied to

large sample sizes and we have called autosomal genotypes

from Affymetrix 500K chip data for 4800 individuals. It is

possible to call genotypes for arbitrarily large sample sizes

by randomly partitioning the total sample into subsamples

and calling genotypes in each subsample separately.

For large samples (>1500 individuals), our method

spends > 90% of its computation time in the haplotype-

phasing module. The computation time for haplotype-

phase inference is approximately quadratic in the number

of samples. When performing genotype calling for 4800

individuals for the Affymetrix 500K chip autosomal geno-

types, the total computation time for the 22 autosomes

was approximately 60 days per iteration of our method.

We parallelized by chromosome when calling genotypes

with our method, and the maximum computation time

for a chromosome was 5 days per iteration. Genotype

calling could also be parallelized by overlapping chromo-

some segments to further speed up computation times.

With current commercial rates for cloud computing

(%USD $0.40 per hr), the cost for three iterations of geno-

type calling for 4800 samples genotyped on the Affymetrix

500K chip is < USD $0.40 per sample. This cost is insignif-

icant when compared to the total cost of genotyping for

high-density arrays or the potential expense of investi-

gating a false-positive association caused by a genotyping

artifact. Furthermore, our method can salvage thousands

of markers that would be excluded by standard data QC

filters when genotype calls are made by using only allele

signal intensities.

We plan to evaluate our methods in admixed and non-

European populations in the future, and to extend our

methods for calling genotypes to the X chromosome, to

diallelic and multiallelic CNVs, and to related individuals.

Software Implementation

Our imputation and haplotype-inference methods are im-

plemented in version 3.1 of the BEAGLE software package
er 11, 2009



and in version 0.9 of BEAGLECALL, both of which are

freely available. BEAGLE and BEAGLECALL are written in

Java and run on all major computing platforms.

Appendix 1. A Genotype-Calling Algorithm

that Incorporates LD-Based Estimates

of Genotype Probabilities

In this appendix, we describe an algorithm for the geno-

type-calling module. The algorithm calls genotypes for

a marker by using normalized allele-signal data and current

LD-based estimates of genotype probabilities for that

marker. In our algorithm, genotype probabilities specified

as input data are used to estimate the probability of assay

success for each individual and to estimate the parameters

of the probability distributions that model the observed

allele signal-intensity data. The genotype-calling method

presented here generalizes to multiallelic markers;

however, for simplicity we will assume that allele signal

intensities are measured for only two alleles (A and B)

and that the marker is diallelic with three possible geno-

types (AA, AB, and BB). We assume that there are N

samples, indexed by i (i ¼ 1, 2, 3, . N). We first introduce

some notation for equations in this appendix:

Observed Variables

Si ¼ ðSA
i ,SB

i Þ ¼ normalized A and B allele signal intensities

for the i-th sample.

Unobserved Variables

Gi ¼ the unobserved true genotype (AA, AB, or BB) for the

i-th sample.

Zi ¼ a Bernoulli variable indicating whether the genotype

assay was successful (Zi ¼ 1) or unsuccessful (Zi ¼ 0)

in the i-th sample. An unsuccessful genotype assay

is uninformative for the true genotype.

Probabilities

Pi (Gi ¼ g) ¼ current estimated probability that genotype

Gi ¼ g for the i-th sample.

P(G ¼ g) ¼ population frequency of genotype g.

Pi (Zi ¼ k) ¼ probability that the genotype assay is success-

ful (k ¼ 1) or unsuccessful (k ¼ 0) in the i-th

sample. The algorithm for the genotype-

calling module estimates this probability

conditional on the signal intensities.

P(Z ¼ 1) ¼ probability that the genotype assay is successful

(k¼ 1) or unsuccessful (k¼ 0) in the population.

fg(S; lg) ¼ probability density (parameterized by the vector

lg) of the observed signal-intensity data S when

the genotype assay is successful (Z ¼ 1) and the

true genotype is g.

h(S) ¼ probability density of the observed signal-intensity

data S when the genotype assay is unsuccessful

(Zi ¼ 0). We model h(S) as the uniform distribution

in two dimensions with support equal to Cartesian
The American
product of the range of SA
i and the range of the SB

i for

the marker.

We require PiðGi ¼ AAÞ þ PiðGi ¼ ABÞ þ PiðGi ¼ BBÞ ¼ 1.

We estimate the population genotype frequency of geno-

type g as bPðG ¼ gÞ ¼ ð1=NÞ
PN

i¼1 PiðGi ¼ gÞ, and we estimate

the probability that an assay is successful and unsuccessful

in the population as bPðZ ¼ kÞ ¼ ð1=NÞ
PN

i¼1 PiðZi ¼ kÞ
for k ¼ 0, 1.

We assume that the assay-success random variables Z

and the true genotype G are independent. This assump-

tion is not necessarily true. However, modeling the depen-

dence of Z and G requires additional parameters (one

parameter is required for each of the three possible geno-

types). During the development of our method, we

observed that increased genotype accuracy was obtained

when we used fewer parameters and assumed indepen-

dence of Z and G rather than dependence (data not

shown).

Our genotype-calling module algorithm requires the

normalized allele signal data Si and current estimates of

genotype probabilities Pi(Gi) for each sample as input, and

returns the posterior genotype probabilities PiðGi ¼ gjSiÞ
and the genotype likelihoods PiðSijGi ¼ gÞ for the three

possible genotypes (g ¼ AA, AB, and BB) for each sample.

After the initial iteration of our method, the input geno-

type probabilities PiðGiÞ for the genotype-calling module

are generated by the haplotype-phasing module (see Mate-

rial and Methods). The genotype likelihoods PiðSijGi ¼ gÞ
produced by the genotype-calling module are input data

for the haplotype-phasing module.

We simultaneously estimate the assay-success probabili-

ties PiðZiÞ for each individual and the parameters lg of the

probability-density functions fgðS; lgÞ for the allele signal-

intensity data when the genotype assay is successful. We

start with an initial estimate of PiðZiÞ ¼ c (default c ¼
0.997) and compute initial estimates of parameters lg for

the probability densities of the signal data fgðS; lgÞ when

the assay is successful. Then we iteratively update the esti-

mates of lg and PiðZiÞ. In each iteration, we first update the

current estimate of the assay-success probabilities PiðZiÞ
given the current parameters lg and we then update the

current estimates of the parameters lg given the current

estimates of the assay-success probabilities. A precise

description of how these estimates are updated is given

below. We stop when the estimate of the mean assay-

success probability P(Z ¼ 1) and the estimates of the

components of the parameters lg converge (defined as

a relative absolute change of < 0.001 between successive

iterations), or when a specified maximum number of iter-

ations have occurred (default maximum ¼ 50 iterations).

Updating Assay-Success Probabilities Pi(Zi)

We use PðZjSiÞ as the updated estimate of the assay-success

probability in the i-th sample PiðZiÞ. The observed signal

data, the current estimates of the parameters lg of the

probability densities, the current estimate of the population
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assay-success probability P(Z¼ 1), and Bayes rule are used to

estimate PðZjSiÞ:

PðZ ¼ 1 j SiÞ ¼
PðZ ¼ 1, SiÞ

PðZ ¼ 1, SiÞ þ PðZ ¼ 0, SiÞ

Because G and Z are assumed to be independent, one can

express P(Z, S) as

PðZ, SÞ ¼ PðS jZÞPðZÞ

¼
X

g

PðS, G ¼ g jZÞPðZÞ

¼
X

g

PðS jG ¼ g, ZÞPðG ¼ g jZÞPðZÞ

¼
X

g

PðS jG ¼ g, ZÞPðG ¼ gÞPðZÞ

and thus we estimate PðZ ¼ 1, SiÞ and PðZ ¼ 0, SiÞ as

bPðZ ¼ 1, SiÞ ¼
X

g

fg

�
Si j lg

�
PðZ ¼ 1ÞPiðGi ¼ gÞ

and

bPðZ ¼ 0, SiÞ ¼
X

g

hðSiÞPðZ ¼ 0ÞPiðGi ¼ gÞ

¼ hðSiÞPðZ ¼ 0Þ:

Updating Parameters lg

We use the current estimates of the assay-success probabil-

ities PiðZiÞ and genotype probabilities PiðGiÞ to update the

parameters lg of the probability-density functions fgðS; lgÞ.
In our approach, we assume that the probability density is

parameterized by its moments, and we use a two-dimen-

sional t distribution with a fixed number of degrees of

freedom (df) (default ¼ 5 df), parameterized by its mean

vector and variance/covariance matrix. When the geno-

type assay is successful (Z ¼ 1), the elements of the mean

vector and variance/covariance matrix of the t distribution

fgðSi; lgÞ are

E
�
SA jG ¼ g, Z ¼ 1

�

E
�
SB jG ¼ g, Z ¼ 1

�

Var
�
SA jG ¼ g, Z ¼ 1

�
¼ E

��
SA
�2 jG ¼ g, Z ¼ 1

�
�
�
E½
�
SA
�
jG ¼ g, Z ¼ 1�

�2

Cov
�
SA, SB jG ¼ g, Z ¼ 1

�

¼ E
��

SASB
�
jG¼ g, Z¼ 1

�
�
�
E
�
SA jG¼ g, Z¼ 1

�
E
�
SB jG¼ g, Z ¼ 1

��
Var

�
SB jG ¼ g, Z ¼ 1

�
¼ E

h�
SB
�2 jG ¼ g, Z ¼ 1

i

�
�
E½SB jG ¼ g, Z ¼ 1�

�2
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All of the expectations that define the mean and variance

parameters of each t distribution can be represented as

E½4ðSÞjG ¼ g, Z ¼ 1� in which the function 4ðSÞ is

SA, SB, S2
A, ðSASBÞ or S2

B.

If Gi and Zi were observed, we could estimate

E½4ðSÞjG ¼ g, Z ¼ 1� by using

bE½4ðSÞ jG ¼ g, Z ¼ 1� ¼

PN
i¼1

4ðSiÞIðGi ¼ gÞIðZi ¼ 1Þ

PN
i¼1

IðGi ¼ gÞIðZi ¼ 1Þ

in which I() is an indicator function that is 1 if Gi ¼ g or

Zi ¼ 1 and 0 otherwise. Because Gi and Zi are unobserved,

we substitute the current estimate of the genotype proba-

bility PiðGi ¼ gÞ for IðGi ¼ gÞ and we substitute the current

estimate of the assay-success probabilities PiðZi ¼ 1Þ for

IðZi ¼ 1Þ to obtain the estimate:

bE½4ðSÞ jG ¼ g, Z ¼ 1� ¼

PN
i¼1

4ðSiÞPiðGi ¼ gÞPiðZi ¼ 1Þ

PN
i¼1

PiðGi ¼ gÞPiðZi ¼ 1Þ

The current estimates of the moments bE½4ðSÞjG ¼ g, Z ¼ 1�
determine updated estimates of the probability-density

function parameters lg.

The estimated parameters lg and the estimated assay-

success probabilities PiðZiÞ are used to estimate the likeli-

hoods for each genotype g

PðSi jG ¼ gÞ ¼ fg

�
Si j lg

�
PiðZi ¼ 1Þ þ hðSiÞPiðZi ¼ 0Þ

and the likelihoods are used to estimate the posterior geno-

type probabilities:

PðG ¼ g j SiÞ ¼
PðSi jG ¼ gÞPðG ¼ gÞP

~g

PðSi jG ¼ ~gÞPðG ¼ ~gÞ:

In some cases, the number of individuals with a genotype

g is too small to allow accurate estimation of the parame-

ters lg of the probability density fgðSi; lgÞ describing the

allele signal-intensity data for the genotype. For the anal-

yses in this study, if the estimated number of individuals

with a genotype g was < 5 (estimated from the PiðGiÞ),
a uniform distribution was used in place of fgðSi; lgÞ.
When g ¼ AB, the support of the uniform distribution

was equal to the Cartesian product of the ranges of the A

and B allele signal intensities. When g ¼ AA, the support

of the uniform distribution was equal to the Cartesian

product of the range of the A allele signal intensities and

the range of the subset of B allele signal intensities that

are less than the estimated mean B allele signal intensity

of the BB genotype. Similarly, when g ¼ BB, the support

of the uniform distribution was equal to the Cartesian

product of the range of the B allele signal intensities and

the range of the subset of the A allele signal intensities
ber 11, 2009



that are less than the estimated mean A allele signal inten-

sity of the AA genotype.

Appendix 2. Excluded Markers

When calling genotypes from allele signal data (without

using LD), data QC filters are typically applied after making

genotype calls. This is a sensible strategy because markers

are called independently and incorrect genotype calls at

one marker do not affect the accuracy of genotype calls

at neighboring markers. However, for multilocus geno-

type-calling methods, markers with high rates of error

introduce noise that may decreases genotype-call accuracy

at neighboring markers. Thus, for multilocus methods, it

may be advantageous to perform data-quality filtering

prior to or during genotype calling. However, excluding

markers with higher rates of genotype error can also have

potential negative effects because information in the data

set is also reduced.

During the development of our method, we found that it

is necessary to apply an HWE filter before the first iteration

of the method. When we omitted the HWE filter, many

markers that would have been excluded by an HWE filter

passed our missing-data filters and resulted in false-positive

signals of association with bipolar disorder (data not

shown). Applying an HWE filter at the end of multilocus

genotype calling did not solve this problem. We conjecture

that this is because the haplotype-phasing module infers

haplotype phase under the assumption of HWE and that

this reduces the departure from HWE somewhat without

sufficiently improving genotype accuracy to eliminate

the false-positive association. Applying an HWE filter prior

to calling genotypes with our method was necessary for

achieving the reduction in false-positive associations

described in the Results section.

During development of our method, we also found that

we obtained better results (improved genotype accuracy

and fewer false-positive associations) by applying increas-

ingly stringent missing-data filters prior to each iteration

of the method, rather than applying data QC filters only

prior to the first iteration (data not shown).

Genotype data QC filters were applied prior to each of

the iterations of our method and after genotype calling

for all other methods. For CHIAMO genotype data, we

excluded the 30,586 autosomal markers that were

excluded by the WTCCC in their analysis.7 Almost all

(>99.5%) of the markers excluded by the WTCCC were

excluded because of departure from HWE or a high propor-

tion of missing genotypes. For genotype data from other

genotype-calling methods, we excluded markers showing

departure from HWE or having a high proportion of

missing genotypes. The number of excluded markers

depended on the genotype-calling method and the data

source (Affymetrix 500K chip or Illumina 550K chip).

We excluded markers with HWE p value < 10�6 in

controls or< 10�9 in cases. We chose a stricter HWE p value
The American
threshold for cases than for controls because disease-asso-

ciated variants can cause departures from HWE in cases.

We calculated exact HWE p values39 by using the most

likely genotype call obtained from the current estimate

of genotype probabilities.

For BIRDSEED genotypes, we excluded markers with

> 8% missing genotypes when using BIRDSEED’s default

0.1 quality-score threshold. This missing-data filter for

BIRDSEED was selected so that the number of excluded

markers for BIRDSEED was similar to the number of

excluded markers for CHIAMO. For GenCall, we excluded

markers with > 3.5% missing genotypes when called with

GenCall. For ILLUMINUS, we excluded markers with > 2%

missing genotypes when genotypes with < 98% proba-

bility were set as missing.

For our method, we used increasingly stringent missing-

data filters prior to each iteration. The missing-data filters

operated on the current genotype probabilities that were

the input data for the genotype-calling module. The

missing-data filter that we used for our method depends

on a single parameter b (0 % b % 1). We set all genotypes

with probability < b to missing, and we excluded markers

with > (1 - b) missing data. For Affymetrix bipolar disorder

and control data, we used missing-data filters with b ¼ 0.0,

0.96, 0.97 in iterations 1, 2, and 3, respectively. For Affyme-

trix type 2 diabetes and control data, we used missing-data

filters with b ¼ 0.9, 0.96, 0.97 in iterations 1, 2, and 3,

respectively. For Illumina data, we used missing-data filters

with b ¼ 0.9, 0.98, 0.985 for iterations 1, 2, and 3, respec-

tively. We applied the data QC filters for the third iterations

(HWE filter and missing-data filter) before and after the

third iteration of our method. Thus, before and after the

third iteration of our method, for Affymetrix data we

excluded markers with > 3% missing genotypes when

genotypes with < 97% probability were set as missing,

and for Illumina data we excluded markers with > 1.5%

missing genotypes when genotypes with < 98.5% proba-

bility were set as missing.

Supplemental Data

Supplemental Data inclue four figures and can be found with this

article online at http://www.cell.com/AJHG.
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Web Resources

The URLs for data presented herein are as follows:

Affymetrix Power Tools, http://www.affymetrix.com/partners_

programs/programs/developer/tools/powertools.affx

BEAGLE Genetic Analysis Package version 3.1, and BEAGLECALL

version 0.9, http://www.auckland.ac.nz/~browning/beagle/

beagle.html

BRLMM White Paper, http://www.affymetrix.com/support/

technical/whitepapers/brlmm_whitepaper.pdf

European Genotype Archive (repository of WTCCC genotype

data), http://www.ebi.ac.uk/ega/page.php

Illuminus, http://www.well.ox.ac.uk/~tgc/illuminus_documentation.

htm

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim

Welcome Trust Case Control Consortium, http://www.wtccc.org.uk
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